
JAVA SE

Quiz yourself: Search stream data
using the findFirst, findAny, and
anyMatch methods (advanced)
Streams are complicated. With the right
approach, they can be very efficient too.
by Simon Roberts and Mikalai Zaikin

August 28, 2020

If you have worked on our quiz questions in the past, you know none of
them is easy. They model the difficult questions from certification
examinations. The “intermediate” and “advanced” designations refer to the
exams rather than to the questions, although in almost all cases,
“advanced” questions will be harder. We write questions for the
certification exams, and we intend that the same rules apply: Take words
at their face value and trust that the questions are not intended to deceive
you but to straightforwardly test your knowledge of the ins and outs of the
language.

Given the following code:

Which code fragment determines if the word “Java” is present in the
 list in the most computationally efficient way? Choose one.

A.

The answer is A.

B.

The answer is B.

List<String> src = List.of("Java 11", "Exam");List<String> src = List.of("Java 11", "Exam");

srcsrc

List<String> res = List.of();List<String> res = List.of();
src.stream()src.stream()
 .peek(v -> { if (v.contains("Java")) res.add(v); .peek(v -> { if (v.contains("Java")) res.add(v);
 .count(); .count();
var a = (res.size() > 0);var a = (res.size() > 0);

var a = src.stream().filter(v -> v.contains("Java"))var a = src.stream().filter(v -> v.contains("Java"))

Quiz yourself: Search stream data
using the findFirst, findAny, and
anyMatch methods (advanced)

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/java-se-3
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

C.

The answer is C.

D.

The answer is D.

Answer. All the code fragments shown are syntactically valid and compile
successfully, and all but one are functionally correct. Thus, the task is to
analyze what fragments are correct, and of those, which is the most
efficient.

Examining the code in option A, it seems that the approach is to pull the
data through a stream pipeline, use to add any items that contain
the word “Java” to a second list, and then count the items in that resulting
list.

It’s likely that your instinct says this seems overly complex, but instinct
isn’t the best way to answer questions. However, there are indeed several
problems with this code.

One problem is that the method creates an immutable object.
Therefore, if the code tried to add to the list , it would throw an
exception. From this, you can determine that option A cannot work and
must be incorrect.

Interestingly, however, the terminal operation has some
potential optimizations noted in the documentation:, as follows:

An implementation may choose to not execute the stream
pipeline (either sequentially or in parallel) if it is capable of
computing the count directly from the stream source. In such
cases no source elements will be traversed and no intermediate
operations will be evaluated. Behavioral parameters with side-
effects, which are strongly discouraged except for harmless
cases such as debugging, may be affected.

In this case, the implementation of in most regular JDKs results in
the method immediately returning the size of the list as 2 without
ever pulling any data through the pipeline. As a consequence, it’s likely
that the list will, in fact, be empty, and the code will assert, wrongly,
that the word “Java” never appears. But as already described, if this
optimization is not implemented on a given JVM, the code throws a
runtime exception and fails anyway.

Another stylistic problem with the code of option A is that the stream
pipeline uses visible side effects. That is, it modifies the externally
declared list in the pipeline processing. Side effects like this are
incompatible with the precepts of functional style. Perhaps more
importantly, if a stream such as this worked reliably in sequential mode, it
would almost certainly fail unpredictably if it were run in parallel mode,
because of uncontrolled concurrent access to the list.

The remaining options are all functionally correct, but let’s investigate the
operation of each to determine how they work and which is most

var a = src.stream().anyMatch(v ->var a = src.stream().anyMatch(v ->

v.contains("Java"));v.contains("Java"));

var a = src.stream()var a = src.stream()
 .filter(v -> v.contains("Java")) .filter(v -> v.contains("Java"))
 .collect(Collectors.toList()); .collect(Collectors.toList());

peekpeek

List.ofList.of

resres

count()count()

countcount

countcount

resres

resres

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/IntStream.html#count()

Simon Roberts
Simon Roberts joined Sun Microsystems in time to
teach Sun’s first Java classes in the UK. He created
the Sun Certified Java Programmer and Sun
Certified Java Developer exams. He wrote several
Java certification guides and is currently a freelance
educator who publishes recorded and live video

computationally efficient.

Option B builds a two-stage pipeline on the stream. The first stage, the
 operation, drops any items that do not contain the word “Java,”

and the second stage (which is the “short-circuiting” terminal
operation) determines if the stream contains any items at all, returning a
nonempty as soon as a value is found or an empty

 if the stream is exhausted without finding anything.

To finally determine if the word “Java” was found in the stream, you’d
need to test the , probably using the method . This
adds one more step to the overall efficiency question. So, the logic and
implementation of this option are sound; it uses a two-stage pipeline that
will process only one stream item before producing its affirmative result
packaged as the , which must be tested to determine the
required information.

Let’s continue the investigation to see if one of the other options might
offer a better solution.

Option C uses the short-circuiting terminal operation, so like
option B, it stops as soon as the final result can be determined. Rather
than using two pipeline stages, it simply pulls data through the pipe and
tests to see if each item satisfies the required criterion in a single stage. It
returns a simple Boolean value immediately if such an item is found;
it returns if the stream is exhausted without a match. This is
exactly what is required and improves on option B in several ways: The
pipeline is one stage, rather than two, and it produces a Boolean result
directly without requiring subsequent testing. Thus, option C is clearly
better than option B. Therefore, option B is incorrect.

Option D filters the original stream looking for elements that contain the
word “Java” and then collects the resulting values into a . This is
inefficient compared to options B and C because it must process the
entire list rather than stopping as soon as a result is known. It’s preferable
to option A in that it does not fail as a result of the optimization of the

 method and it does not it throw exceptions. It also avoids the use
of side effects, and so it would work in a parallel execution mode. But,
although it answers the question from a functional perspective, it is
nowhere near as efficient; it processes the entire stream and you must
test the size of the resulting list (presumably by testing)
before you actually know the answer. Therefore, option D is incorrect.

Based on the requirements, you can see that of the three options that
produce a correct answer, option C is the most efficient (and, perhaps
more importantly in professional programming, it’s arguably the most
readable):

Therefore, the correct option is C.

filterfilter

findAnyfindAny

Optional<String>Optional<String>

OptionalOptional

OptionalOptional isPresentisPresent

OptionalOptional

anyMatchanyMatch

true

false

ListList

countcount

a.size() > 0a.size() > 0

It provides an answer directly as a Boolean, rather than requiring
subsequent testing of an intermediate value.



It benefits from short-circuit behavior and will stop processing the
source as soon as the answer can be definitely known.



https://blogs.oracle.com/javamagazine/simon-roberts
https://blogs.oracle.com/javamagazine/simon-roberts

training through Pearson InformIT (available direct
and through the O’Reilly Safari Books Online
service). He remains involved with Oracle’s Java
certification projects.

Mikalai Zaikin
Mikalai Zaikin is a lead Java developer at IBA IT
Park in Minsk, Belarus. During his career, he has
helped Oracle with development of Java certification
exams, and he has been a technical reviewer of
several Java certification books, including three
editions of the famous Sun Certified Programmer for
Java study guides by Kathy Sierra and Bert Bates.

Share this Page

 
Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/mikalai-zaikin
https://blogs.oracle.com/javamagazine/mikalai-zaikin
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

